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Abstract

Geologists examine fabrics to constrain models of formation or of deformation of rocks, and it is often convenient to summarise the results

by a fabric ellipsoid. As fabric data are commonly collected on planar sections through the rock, estimating a fabric ellipsoid from sectional

ellipses, often with arbitrary orientations, is an important task. An algebraic method to calculate such an ellipsoid, presented in an earlier

paper, has been implemented with the program ELLIPSOID. It is used here on examples that illustrate questions and issues that arise when

collecting, selecting and processing sectional fabric data, and when assessing the results. The quality of fit of the ellipsoid to the data is

assessed in all cases. Examples include a case in which the average sizes of markers on individual sections can be used in the determination of

the ellipsoid, and other cases in which such sizes are not useful; a case in which sectional ellipses are not obtained from closed markers; and a

case in which data scatter and insufficient coverage of section orientations lead to a hyperboloid instead of an ellipsoid.

q 2005 Elsevier Ltd. All rights reserved.

Keywords: Sectional fabric ellipse; Fabric ellipsoids; Sectional ellipses; Strain analysis
1. Introduction

Geologists often seek to obtain three-dimensional fabric

information from rocks, although many fabric data are

collected on two-dimensional sections. As in the type

example of paleostrain determination, whenever sectional

fabric data can be represented or summarized by an ellipse

and the sought three-dimensional fabric by an ellipsoid, it is

necessary to calculate the ellipsoid from measured sectional

ellipses. Robin (2002) presented an algebraic solution to the

problem of fitting an ellipsoid from three or more sectional

ellipses of arbitrary orientations. The method is

implemented in ELLIPSOID,1 a Visual Basic program, and

we present here several examples that illustrate its use and
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ELLIPSOID can be downloaded as freeware from http://www.sciences.

univ-nantes.fr/geol/UMR6112/SPO/.
some of the issues that arise when seeking a best-fitting

fabric ellipsoid.

Robin (2002) developed two solutions to determine a

best-fitting ellipsoid. In ‘Case 1’, ‘with scale factor’, the

average size of markers on individual sections is deemed

significant and contributes to determination of the ellipsoid.

Indeed, in the field, a geologist commonly uses average

marker sizes to approximate fabric directions. One may, for

example, search sections on which average markers size is

smallest as an approximation of the normal to the shape

lineation direction; or, on the contrary, one might search for

the largest marker size to find the foliation. In Case 1, the

data collected on each of three or more sections are typically

the orientation of the long axis of the sectional ellipse, and

the sizes of its long and short diameters. Sectional data,

including the actual dimensions of sectional markers, are

used to build the components of a system of six linear

equations in the six unknown coefficients describing the

ellipsoid.

In ‘Case 2’, ‘without scale factor’, individual sections do

not yield any useful size information. This may be because

the number of markers on each individual section is too

small to give a meaningful indication of average size, or

sizes of the 3D markers are too variable, or the method to
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determine a sectional ellipse does not yield any size. The

only data retained are then orientation and axial ratio of each

sectional ellipse. Given N sections, the data are used to build

the components of a system of (NC5) equations in (NC5)

unknowns: N ‘scale factors’ (one for each section) and five

independent parameters that define a dimensionless

ellipsoid.

In both Cases 1 and 2, solution of the system of equations

corresponds to minimizing a scalar ‘incompatibility index’,ffiffiffiffi
~F

p
, which is a measure of the misfit between sectional

ellipses and the ellipsoid sought (Robin, 2002). As the

system always yields a solution, regardless of quality and fit

of the data, understanding the meaning of the incompat-

ibility index is important in order to determine our

confidence in the results. An incompatibility index,
ffiffiffiffiffi
FI

p
,

is also calculated for each individual face I, and can

therefore eventually be used to query and re-evaluate

individual data.

As in the method of Owens (1984), ELLIPSOID implements

the possibility of assigning different weights to different

sections. Different weights can be assigned as a function of

the different confidence in the data from each section

(Robin, 2002) or because several sections, e.g. because of

their similar orientations, are not considered to be

sufficiently independent from each other (Owens, 1984).

In some cases, the quadratic surface that best fits the data

is a single-sheet hyperboloid rather than an ellipsoid. This

might arise in particular when the sectional data are

scattered or of modest quality and there is no section

parallel to the long axis of the fabric ellipsoid (i.e. parallel to

the ‘lineation’). It is important then to know what further

data are needed to ‘close’ that hyperboloid.

Four examples presented here are selected to illustrate

several aspects of fabric ellipsoid determination. (1) Owens

(1984) was the first to establish a method to determine an

ellipsoid from any number (R3) of arbitrarily oriented

sections. We apply ELLIPSOID to reduction spots analysed in

one of Owens’s examples and compare incompatibility

indices. (2) Mafic enclaves near the border of the Mont-

Louis provide an example where insufficient data yield a

hyperboloid rather than the ellipsoid sought, and also show
Table 1

Sizes and orientation of reduction spots on sections of a sample of Dinorwic

slate, N. Wales. Data from Owens (1984)

No. Strike Dip Rake Long
axis
(mm)

Short
axis
(mm)

Weight r0K1
ffiffiffiffiffiffiffiffiffi
FI

min

p
(%)

1 302 78 165 16.5 4.5 0.58 0.17 3.0

2 301 77 166 9.5 3.5 0.58 0.16 2.8

3 302 75 166 20.5 6.8 0.58 0.06 1.4

4 201 71 173 37 6 1 0.03 0.2

5 178 71 0 7.5 1.5 1 0.07 1.9

6 18 79 10 16.7 3 0.58 0.26 4.4

7 17 78 8 22 4 0.58 0.06 0.8

8 19 78 7 18 3 0.58 0.11 2.1
how individual incompatibility indices can be used to either

track measurement errors or provide additional information

on mechanisms of fabric acquisition. (3) The opaque

aggregates studied in thin sections of the Tellnes ilmenite

deposit of SW Norway provide an example of determination

of sectional ellipses that are not determined from closed

markers, and one in which the ellipsoid determined from

sectional data can be compared with that obtained by

measuring the anisotropy of magnetic susceptibility (AMS).

(4) Pyroxene fabric in gabbro-norite from the Critical Zone,

on the eastern limb of the Bushveld complex, is acquired

from large numbers of grains on each section, for which we

can compare the results obtained by using or not using

measured scale factors. The last two examples also illustrate

how practical ‘resampling statistics’ can document our

confidence that the sample size from data sections is

sufficient. For each example, we try to indicate the

geological significance of the results.

Conventions used for data entered into ELLIPSOID and

presented in Tables 1 and 3 (specifically the right-hand rule

and the convention on orientation of rake of the long axis of

the sectional ellipse) are given in Appendix A. The appendix

also discusses coordinate system and the transformation

from laboratory coordinates to geographic coordinates that

ELLIPSOID can effect whenever convenient.
2. Owens’s (1984) reduction spots in a slate from
Dinorwic, N. Wales, UK

Owens (1984) measured reduction spots on eight

sections cut through an unoriented block of slate (Table 1,

columns 1–6). Each section only displays one spot. In an

actual field project, an ellipsoid determined on an oriented

sample could be used to assess the direction, style, and

intensity of deformation within a slate belt.

Whereas one might expect reduction spots in a given

rock to have similar sizes in three dimensions, size set by

some characteristic diffusion distance, actual sections

through them are in general not through their centres.

Therefore, the size of one marker per section is not likely to

carry useful strain information; only the calculation without

scale factor (Case 2) is justified. Owens (1984) assigned

weights to his measurements (Table 1, column 7),

decreasing some on the basis of proximity of their directions

to those of other sections. Fig. 1a shows the results using the

same weights as Owens, whereas Fig. 1b is for equal

weights assigned to all sections. With an incompatibility

index of 2.0 and 2.1%, respectively, the fit is good. The

effect of weighting is small, a consequence of the fact that

sectional ellipses are closely compatible.

Table 1 (last column) lists the individual incompatibility

indices for each spot. The index for Spot No. 6 is 4.4%. If

that face is discarded, the total incompatibility index for the

new determination is reduced to 1.6%, the trend of the long

axis changes by 98 and A/C is reduced from 7.7 to 6.5



Table 2

Results of Owens (1984) for symmetry axes of ellipsoid calculated from

sections of reduction spots in a slate sample from Dinorwic, N. Wales, UK;

to be compared with results in Fig. 2a

A B C

Normalized

length

2.34 1.20 0.36

Trend (8) 29 122 265

Plunge (8) 10 14 73

P. Launeau, P.-Y.F. Robin / Journal of Structural Geology 27 (2005) 2223–2233 2225
(Fig. 1c). Considering how small the data set is, these

changes may be deemed small. Owens’s (1984) best-fit

solution, shown in Table 2, is essentially identical to the

solution found with ELLIPSOID after elimination of Spot

No. 6.

Owens (1984) calculates the equivalent of an

incompatibility index for each section by applying to

each sectional ellipse a virtual ‘retrodeformation’ defined

by the ellipsoid found. This retrodeformed axial ratio, rI
0,

can be compared with that of a circle, i.e. to 1, or to the

average value of these ratios for all sections. Owens’s

values of rI
0K1 are given in Table 1 (column 8). Plot of

one incompatibility index vs. the other shows an

approximate linear correlation between the two. The

discussion by Owens (1984) on the use of such an index

to identify ‘rogue data’ remains entirely appropriate for

determinations with ELLIPSOID and will be reviewed again

in the next example.
Fig. 1. Two outputs of ELLIPSOID for sectional data on reduction spots in slates from

Each window shows the number of faces, N, used in the calculation, the coefficie

eigenvalues of that matrix, direction cosines of the corresponding eigenvectors, th

their directions given by their trends and plunges, axial ratios, strike and dip of

‘Flinn’ is the shape parameter, ðA=BK1Þ=ðB=CK1Þ; P 0 and T are, respectively, the i

and applied here to the shape ellipsoid. The equal-area spherical projection shows t

ellipsoid found (,), of its intermediate axis (6), and of its short axis (B), the plan

as by Owens (1984). See Table 1. (b) Ellipsoid found when all sections are weig
3. Mafic enclaves in the hercynian Mont-Louis granite,

eastern central Pyrenees

Geologists concerned with granite emplacement gener-

ally interpret shapes of enclaves found in granitic rocks as

providing some record of deformation of these enclaves.

However, that deformation does not relate simply to any

well-defined strain in the host granite, and it is also expected
Dinorwic, N. Wales, UK. Data, from Owens (1984), are shown in Table 1.

nts of the inverse shape matrix calculated by the method of Robin (2002),

e corresponding diameters of the best-fit ellipsoid normalized to ABCZ1,

the ‘foliation’ found, and rake of the ‘lineation’ within the foliation plane.

ntensity and shape parameters defined by Jelinek (1981) for the AMS tensor

he poles to the planar sections used (C), the directions of the long axis of the

e of ‘foliation’ (i.e. plane A). (a) Ellipsoid found for sectional data weighted

hted equally.
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that different populations of enclaves may show different

combinations of deformation and of rigid rotation, as

recently emphasized by Paterson et al. (2004). Still,

enclaves often exhibit a well-defined anisotropic distri-

bution that must record some common history. We describe

a sequence of measurements and results obtained in the field
Fig. 2. Ellipsoid determinations from mafic enclaves in the Mont-Louis granite. (a

(b) Ellipsoid obtained with 21 additional measurements. (c) Elimination of seven

change the result much but decreases the overall incompatibility index.
close to the southern contact of the Mont-Louis granite, near

Site 10 of Gleizes et al. (1993, fig. 3).

Each oriented section measured is a rock face on which

one enclave section is seen and, as with reduction spots,

sectional areas of these enclaves are not expected to carry

any useful size information: only sectional axial ratios and
) The first 14 enclaves measured yield a hyperboloid instead of an ellipsoid.

measurements with individual compatibility indices above 30% does not
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directions are used to determine an ellipsoid (Case 2,

‘without scale factor’).
3.1. The ‘hyperboloid problem’

The first 14 measurements, from a road-cut outcrop, were

on rock faces with a relatively narrow range of orientations,

shown by ELLIPSOID as poles (with a C symbol) in a lower

hemisphere equal-area projection (Fig. 2). They yield one

negative eigenvalue for the inverse-shape matrix describing

the ellipsoid (Robin, 2002), indicating that the conic surface

found is a single-sheet hyperboloid rather than an ellipsoid.

The corresponding axial ‘length’, rather than shown as a

complex number, is shown by ELLIPSOID in red and preceded

by an asterisk (*). As explained below, finding a

hyperboloid is not due to an algebraic failure: some data

may fit a hyperboloid best.

Fig. 3a shows a model of three measured sectional

ellipses with an insufficient coverage in their orientations.

Sizes of the measured sections are assumed not to be a

useful parameter, but they have been drawn here so that

each area matches the area of their respective elliptical

section of the conic surface found. It is intuitively easy

to see that some distributions could fit a hyperboloid, and

even do so with a low incompatibility index. Yet a

hyperboloid, even though it might be a solution to the

geometrical problem, is not an acceptable geological

solution. If an additional, better-oriented face, such as

Face 4 (Fig. 3b) is measured, it serves to ‘close’ the

conic surface, and the calculation now yields an

ellipsoid. In the authors’ experience, the symmetry axis

of the hyperboloid corresponding to the complex
Fig. 3. (a) In some cases, the quadratic surface that best fits measured

ellipses is a hyperboloid rather than an ellipsoid. (b) Additional data,

particularly from planar sections close to the direction of the axis [A] of the

hyperboloid, should ‘close’ the ellipsoid.
eigenvalue, shown as a square in Fig. 2a, is often close

to the long direction of the ellipsoid that is found when

more data are obtained.

3.2. Incompatibility indices and elimination of outlying data

An additional 21 enclaves measured within 60 m of the

original site yield the result shown in Fig. 2b, in which the

long axis of the ellipsoid is indeed close to the ‘complex

axis’ originally found and shown in Fig. 2a. Paradoxically,

the incompatibility index, 21.6%, is larger than before

(11.6%), no doubt a reflection of the complexity of fabric

development in enclaves. Such an increase does not

necessarily mean that our confidence in our estimate has

decreased. This is because
ffiffiffiffi
~F

p
can be thought of as an

estimate of the standard deviation of the population of

sectional ellipses. It describes that population itself. In

analogy with the confidence in the estimate of a mean, and

without any claim to statistical rigour, we may take our

interval of confidence in the result as varying as
ffiffiffiffiffiffiffiffi
~F=N

p
, N

being the number of sections measured. As it turns out, this

ratio does increase slightly here, from 3.10 for the 14

measurements to 3.65 for the 35 measurements. In other

words, our confidence has indeed decreased somewhat,

supporting the suggestion that the population of enclaves is

complex and somewhat heterogeneous.

Table 3 shows all 35 data and the calculated

incompatibility index,
ffiffiffiffiffiffiffiffiffi
FI

min

p
, for each face I. We note

that the index for Face 18 is 82.3%. This may be treated

as an exceptional outlier, and we investigate the effects

of eliminating it (by assigning it a weight of 0). All

individual incompatibility indices change somewhat; we

can now eliminate the enclave with the next highest

index. Repeating this procedure until all data with an

index O30% are eliminated yields the results shown in

Fig. 3d. After eliminating seven enclaves in this manner,

the overall incompatibility index has decreased from 21.6

to 10.4%, the foliation and lineation directions have not

changed significantly, but the Flinn parameter,

ðA=BK1Þ=ðB=CK1Þ, has changed from 2.30 to 0.56.

With this procedure, ellipsoid determination thus pro-

vides a tool and the data to investigate the competing

mechanisms leading to a final enclave fabric as well as

potential measurement errors (Owens, 1984), outliers can

be examined, e.g. for petrographic characteristics or for

shapes that are more or less likely to rotate than to

deform passively, etc.

3.3. Mont-Louis marginal enclaves

As mentioned earlier, the site studied is near the southern

margin of the Mont-Louis granite, where we would expect

the latest magmatic strain to be dominantly shear parallel to

the local direction of magma movement with respect to the

wall. For this site, with BZ0.91–1.08, i.e. close to 1, data

are compatible with such magmatic strain (at least that part



Table 3

Measurements of enclaves near the south wall of the Mont-Louis Massif,

East Central Pyrenees, by Patrick Launeau and Gérard Gleizes

I Strike

(8)

Dip

(8)

Rake

(8)

Long

axis

(cm)

Short

axis

(cm)

ffiffiffiffiffiffiffiffiffi
FI

min

p
(%)

1 99 49 170 11 2.5 24.4

2 93 63 155 13.5 2.5 19.5

3 93 63 157 5.5 2 10.7

4 151 74 133 7 2.5 11.1

5 159 88 127 18.5 6 21.9

6 157 71 122 5.5 2.5 11.2

7 166 62 140 6 1.2 35.3

8 148 83 134 4 0.9 19.8

9 150 43 145 6 1.7 31.7

10 95 74 139 5 1.5 28.3

11 105 80 154 3.5 1.6 5.5

12 144 83 154 8.5 1.6 37.9

13 127 48 152 7 1.8 20.7

14 117 29 152 3.7 1.6 5.5

15 321 74 50 10 5.1 13.6

16 320 73 51 8 2 28.2

17 325 76 49 6 2.8 15.4

18 146 78 20 11 1.3 82.3

19 0 87 60 40 18 24.9

20 317 78 53 6.5 2.1 24.8

21 311 77 44 13.5 4 19.2

22 83 35 0 14 5 18.5

23 72 30 5 5.5 2.2 16.7

24 66 38 10 2.8 1.7 4.7

25 60 78 25 19.5 8.7 36.3

26 96 49 170 7.5 2.2 20.1

27 200 41 47 7 2.8 44.0

28 146 67 129 6.5 2.7 7.2

29 61 12 0 6.2 2.8 30.4

30 156 39 115 34 9.5 15.0

31 72 90 7 6.5 2.5 33.0

32 77 42 0 12 4.1 19.3

33 110 44 140 4.3 1.2 26.4

34 95 22 159 15 6 18.2

35 185 87 56 13.7 4 74.1
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of the strain responsible for the shape of the enclaves), with

magma coming up from a west-north-west direction. The

same orientation is found at a site with 48 enclaves located

11 km to the east along the same margin. This relatively

simple and robust pattern suggests that late emplacement

strain may still have played a dominant role in enclave

shape fabric, in spite of the expected variety of enclave

rigidities and deformation histories. This may be because

the host magma in that final stage, close to the margin, was

sufficiently crystallized for the viscosity contrast to be low,

and was thus able to impose a significant strain on most

enclaves.
4. Image analysis in the Tellnes Ilmenite deposit, SW
Norway

The Tellnes ilmenite norite ore body of SW Norway is

the second most important magmatic titanium deposit in
production in the world. It is interpreted as a late dike

(w920 Ma) within an anorthosite host. The ilmenite,

actually a hemo-ilmenite (Duchesne, 1999), is interstitial

to the sub- to euhedral crystals of plagioclase, orthopyrox-

ene and olivine (see Fig. 4a). Its texture has been interpreted

as a result of coalescence and recrystallization between the

silicate minerals of earlier isometric-shaped ilmenite grains

(Diot et al., 2003). In a study of the norite, Diot et al. (2003)

compared the fabric of its opaque mineral phases, as

obtained from sectional image analysis, with measured

anisotropy of magnetic susceptibility (AMS). Sample TS 06

is reported here to illustrate the use of a sectional elliptic

fabric that is based on interconnected rather than closed

markers.

The determination of an ellipsoid from such a texture

requires some discussion. If a section characterized by

only two ‘phases’—meaning here all opaque minerals

vs. all non-opaque minerals—is isotropic, orientations of

sectional boundaries are equally distributed over all

orientations within the plane of the section. This means

that a ‘characteristic shape’ for the image—which can

be obtained in principle by sorting all boundaries

according to their orientation and drawing them in

sequence (e.g. Launeau and Robin, 1996, Section 4.5)—

is a circle. In three dimensions, the characteristic shape

would be a sphere and sectional characteristic shapes

are sections of that sphere. If such a rock undergoes a

homogeneous strain, the sphere becomes an ellipsoid,

and sectional characteristic shapes become elliptical

sections through that ellipsoid. Ellipsoid determination

from sectional ellipses would therefore be no different

here from that done where fabric elements are closed

markers. More generally, any fabric element that can be

used as a strain gauge can in principle give rise to

sectional strain ellipses and to a strain ellipsoid

determination. In the case of the Tellnes norite, the

texture is not interpreted to be the result of an actual or

of some virtual strain, and therefore the existence of an

ellipsoidal characteristic shape in three dimensions is an

approximation. But it is the same approximation as that

for many closed markers that are not interpreted as

strain markers.
4.1. Methodology

Samples were first analysed by AMS, using standard

orientation procedures. Principal directions of the magnetic

susceptibility tensor are shown on an equal-area projection

in Fig. 4b. Large thin sections (3.25 cm!5 cm) were cut

normal to these principal directions and labelled (xy), (yz)

and (xz), according to the convention discussed in Appendix

A. Although automated, the analysis of a site remains

labour-intensive and three approximately orthogonal sec-

tions are a good choice that provides sufficient fabric

information for the determination of a fabric ellipsoid



Fig. 4. IlmeniteCmagnetite fabric in the Tellnes deposit, SW Norway. (a) Digital image of thin section, showing only opaque and non-opaque minerals. (b)

Lower hemisphere equal-area spherical projection of the result of anisotropic magnetic susceptibility (AMS) measurements. Below it is the plot of Jelinek’s

parameters T vs P 0. (c) Spherical projection showing orientation of the fabric ellipsoids calculated, with, below, Jelinek’s parameters for the fabric ellipsoid

found.
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without undue thin section preparation and associated

petrography.

In thin section, as shown in Fig. 4a, individual grains of

interstitial ilmenite cannot be easily separated. Instead,

boundaries between opaque minerals—with no distinction

between ilmenite and magnetite—and non-opaque minerals

were analysed with the method of intercepts (Launeau and

Robin, 1996), using the latest version of the program

INTERCEPT downloadable from the same page as ELLIPSOID. As

discussed above, this method provides a record of the

orientation distribution of the boundaries separating opaque

from non-opaque phases and a sectional ellipse can be

extracted from that record. The images do carry size

information, but only the treatment without scale factor

(Case 2) is reported here.
4.2. Scatter analysis and results

Fig. 4b shows the principal directions of AMS, with the

traditional scatter of directions obtained from processing

several samples. A comparable plot can be obtained from

image analysis. The three large thin sections were each

divided into halves, all halves were analysed separately, and

the resulting sectional ellipses were combined in the eight

different ways possible, thus yielding eight different

ellipsoids. Fig. 4c shows the symmetry directions of these

eight ellipsoids. We note that the scatter in the directions

found is quite small, smaller than that of AMS; it indicates

that the fabric is homogeneous over the scale of the large

thin sections and that the sample size is sufficient. Directions
found with AMS and image analysis of opaque minerals are

in reasonable agreement, with all ellipsoid directions falling

in the respective 2s cones around the AMS mean principal

directions. Even axial ratios are close, perhaps fortuitously:

k1=k2=k3Z1:08=0:98=0:94, while A=B=CZ1:11=0:99=0:91.

The incompatibility index for the ellipsoid is 1.6%, better

than that for the reduction spots. This lower index is related

not only to the large sampling provided by the intercept

method, but is also a function of the low anisotropy of the

fabric. A justifiable normalization of the incompatibility

index to the anisotropy of the rock is yet to be devised.

Diot et al. (2003) argue that the directions found with

AMS and with image analysis of opaque/non-opaque

boundaries record the direction of the dike walls along

which the noritic crystal mush was emplaced and the

direction of magma flow within that fracture.
5. Pyroxene fabric in a gabbro-norite from the critical

zone, eastern limb of the Bushveld complex

The ca. 2 Ga Bushveld complex is one of the world’s

largest deposits of base metals and platinum group

elements. Yet the mechanism of emplacement and

formation of its magmatic layers is still enigmatic.

Fabric studies have been undertaken on a number of

units within the complex in order to document a possible

anisotropy within the plane of layering and therefore a

possible magmatic flow direction. Using image analysis,

Auréjac (2004) has analysed the pyroxene fabrics of



Fig. 5. Pyroxene fabric in a gabbro-norite from the critical zone, eastern limb of the Bushveld Complex. (a), (b) and (c) Number of pyroxene grains, n, used to

calculate (by the inertia tensor method) the three orthogonal sectional ellipses shown, and parameters of the ellipses found. r, axial ratio of ellipse, f, rake of

long axis of ellipse, as defined by the convention shown in Fig. 7a. (e), (f) and (g) Digital images of the thin sections; the orientation of the long axis of each

pyroxene grain is shown by its colour as per the rose in (d). The rectangle (1) of (g) is one example of nine quarter-size counting windows used to calculate 729

(Z93) ‘subset ellipsoids’. (h) Ellipsoid parameters calculated. (i) Lower hemisphere equal-area projection of the results. Solid symbols are for the ‘full

ellipsoid’, i.e. that found by using all the pyroxene grains in each section. Open symbols are mean parameters of 729 ‘subset ellipsoids’ (see text). Surrounding

cone projections are at 2s from each mean. For the two ellipsoids: squares indicate the long axes, A; triangles, B; circles, C. (j) T vs. P 0 for the same ellipsoids

with previous mean and s convention.
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gabbronorite samples from 78 different sites spread

northward from the vicinity of the Tweefontein mine

over a north–south distance of ca. 60 km. No lineation is

detected in the field. The analysis of Sample 50B is

presented here to illustrate the use of scale factors in

calculating the ellipsoid and to continue a reflection on

statistical testing of the results.

5.1. Methodology of image analysis

The main fissility of the rock is subparallel to the

layering. Each sample was therefore oriented in the field by

marking and recording the orientation of its face parallel to

that layering. The sample was then sectioned along three

orthogonal cuts, one (xy) parallel to the layering and two,

(yz) and (xz), normal to the layering and to each other

(Fig. 5).

Oriented thin sections were then analysed on the rotating

polarizer microscope developed by Fueten and Goodchild

(2001). Orthopyroxene grains were identified and isolated

by the same technique as that used by Fueten and Goodchild

(2001) for quartz grains. The resulting images of individual

grains are shown in Fig. 5e–g. Shape orientations of

individual grains were determined by the inertia tensor

method using program SPO (Launeau and Cruden, 1998;

Launeau, 2004) downloadable from the same page as

ELLIPSOID.

5.2. Results

Sectional results, without scale factor (Case 2), are

shown in Fig. 5a–c, and the ellipsoid found, rotated back

into geographic coordinates, is given in table form in

Fig. 5h. The low value of the incompatibility index, 1.7%, is

again a consequence of the low axial ratios of the faces and

of the resulting ellipsoid as well as of the good fit. If the

average sizes of the grains are used to provide a scale factor

for each face and these scale factors are used in the

calculation (Case 1), the results differ by less than 1% and

by a fraction of a degree from the results shown here, while

the incompatibility index increases to 2.2%. Thus, there is

no significant difference between the results obtained by the

two methods here.

The ratio A/B found within the plane of the layering is

only 1.08. This is quite weak, which accounts for why no

lineation could be seen in the field. In order to assess our

confidence in the data, grains in each of the three sections

were split into nine subsets by scanning a quarter size

counting window in three staggered, evenly spaced

positions along both the x- and y-directions; each subset

contains around 230 grains. As was done for the Tellnes

norite, subset ellipsoids are calculated from all possible

combinations of sectional subsets, i.e. 729 (Z93) ellipsoids,

with each section weighted by its number of grains. Similar

analysis with subsets is commonly used in mathematical

morphology (Serra, 1982; Coster and Chermant, 1989).
When each parameter of the ‘full’ ellipsoid (i.e. that

calculated with all the data) falls within the 2s intervals

around the mean for the corresponding parameter of subset

ellipsoids, we conclude that the size of the counting window

is sufficient; the 2s interval can then be seen as a confidence

interval. On the contrary, when some or all the parameters

of the full ellipsoid fall outside the 2s range defined by

subset ellipsoids, we conclude that the counting window is

too small for the heterogeneity of the data. Such an ellipsoid

usually displays a high global incompatibility index. The

sensitivity of this technique increases with the number of

subsets by the use of smaller counting windows and

narrower scan steps, but a number of grains greater than

100 per subset is often necessary.

In the current example, the perfect match between the

full and the subset ellipsoids (Fig. 5h–j) shows that even

though the preferred orientation of the markers is weak, the

directions of the axes of symmetry can be measured with

high confidence. Auréjac (2004) finds that the lineation

direction within the gabbro-norite layers is consistently

WNW–ESE over the field area, whereas similar pyroxene

grain lineation in the pyroxenite that underlies the gabbro-

norite within each cycle is consistently NE–SW. Auréjac

(2004) attributes the latter to primary emplacement

direction of the magma in each cycle, and the former to

secondary magma migration within the chamber.
6. Discussion and conclusion

As shown with these examples, calculation of ellipsoids

from sectional ellipses is a tool that can provide valuable

geological information such as direction of magma

transport, of emplacement mechanism, or of deformation.

Ellipsoid calculations should be equally interesting in

studies of current direction, of paleoslope direction, or of

diagenesis and compaction.

Individual incompatibility indices for each section are

essential tools to assess the data. As already pointed out by

Owens (1984), they can be used to search for errors in

measurement or data entry. But also, as suggested with the

Mont-Louis enclaves, identification of outliers may help

document competing mechanisms of fabric acquisition. A

global incompatibility index,
ffiffiffiffi
~F

p
, is also essential, all the

more necessary as the method always yields a result,

regardless of whether the data are very compatible or very

incompatible. But that index must not be interpreted too

literally when comparing several data sets or comparing

calculation methods. Modelling still needs to be done to

evaluate how the incompatibility index varies as a function

of the axial ratio.

There is at present no theory to translate the confidence

intervals for the measurements on individual faces, and the

distribution of face orientations into a confidence interval on

the parameters describing the ellipsoid found. But partial

sampling tests along the line of what was done for the



Fig. A1. Convention for the description of planes by strike (a) and dip (q),

and that of a direction within that plane by its rake (f). A convention such

as the one illustrated here is necessary for efficient and unambiguous entry

of orientation data into a computer program. Although structural geologists

would normally choose a between 0 and 3608, q between 0 and 908 and f

between 0 and 1808, ELLIPSOID imposes no restriction on the signs and values

of these angles that can be entered for them.
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opaque grains in the Tellnes deposit and for the pyroxene

grains in the Bushveld gabbronorite suggest a possible

practical approach to this statistical problem.

In a recent paper, Gee et al. (2004) repeatedly assert

that ellipsoid determinations from sectional ellipses

require that sections be parallel to the symmetry

directions of the fabric ellipsoid sought and also that

absolute dimensions of the sectional ellipses must be

known. These authors thus directly contradict several of

the papers that they cite, including that of Robin (2002);

as demonstrated here, both assertions are in fact

incorrect. To find a remedy to what are in fact non-

existent problems, Gee et al. (2004) propose to

determine fabric ellipsoids by using the traces of planar

crystallographic features (cleavage and exsolution

lamellae in pyroxene grains, albite twin planes in

plagioclase grains) on three orthogonal thin sections.

They consider each such trace to approximate the

projection on the section plane of the long direction of

the grain; this is of course only true if the planar feature

used happens to be perpendicular to that section, i.e.

rarely, and never for all three sections. Still, it remains

true that in an isotropic rock, such traces would be

isotropically oriented in all sections and also true that if

such directions are then assumed to rotate passively

during a deformation, their distribution can be used to

calculate a sectional strain. However, in this case,

calculating a sectional ellipse from these data and from

the resulting ‘characteristic shape’ (e.g. Launeau and

Robin, 1996) for each section and combining sections

with ELLIPSOID is a much simpler process than the multi-

step and iterative method proposed by Gee et al. (2004).
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Appendix A

The orientation of each section is given by a strike, a, and

a dip q. In the right-hand rule used by ELLIPSOID, illustrated in

Fig. A1, the strike is the azimuth of the strike line such that

the dip of the plane is measured down from the right of that
azimuthal direction. The strike is between 0 and 3608,

counted clockwise from north. The dip q can in principle be

greater than 908 (e.g. as one may want to measure on an

overhung face); but in Tables 1 and 3, dips are always

smaller than 908, and strike is chosen accordingly. The rake

(/pitch) of the long axis of the sectional ellipse, f, is the

angle where the axis makes with the azimuthal line selected

as per the above right-hand rule. Rake can vary between

0 and 1808. All calculations in ELLIPSOID assume a

right-handed geographic coordinate system with [x]Znorth,

[y]Zeast and [z]Zdown.

When making measurements on three orthogonal faces

of a block in the laboratory, it is sometimes convenient

instead to refer these measurements to an equally right-

handed laboratory coordinate system [x], [y] and [z] (Fig.

A2a). The transformation from the laboratory coordinate

system to the geographic coordinate system is completely

defined by a set of Euler angles corresponding to the strike a

of the top face (xy) of the block, the dip q of that face, and

the rake f of the laboratory [x] axis within that top face (Fig.

A2b). If measurements on faces of the rectangular block are

made in accordance with the reference directions shown in

Fig. A2a and the above Euler angles are entered, ELLIPSOID

can transform the orientation of the ellipsoid from lab

coordinates to that in geographic coordinates. All Euler

angles can have positive or negative values.

Alternatively, users can convert their sectional data to

geographic coordinates before entering them into ELLIPSOID.

A simple and practical way, particularly useful when the

faces of the block are not orthogonal, is to set the block in a



Fig. A2. (a) Sketch of the orientation conventions that can be used when

measuring sectional ellipses and calculating fabric ellipsoid in three

orthogonal sections in lab coordinates. (b) Complete characterization of the

orientation of the (xy) face in geographic coordinates, indicated by the

traditional strike and dip values, defines the parameters of the Euler matrix

used by ELLIPSOID to rotate results back into geographic coordinates. Note that

f, the rake of the [x] direction in Face (xy), must be entered according to the

convention defined in Fig. A1. In the case of the figure, f is positive and less

than 908, and [x], [y] and [z] all point downward. For values of the various Euler

angles that are negative or greater than 908, one or more of the axes may point

upward. Nevertheless, the rake f of the [x] axis should always be measured

clockwise when looking along the positive direction of [z].
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sand box, re-orient it to its field orientation, using the

preserved measured field face, and then measure the

orientations of the faces and of the rakes with a compass

and clinometer.
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331–350.

Launeau, P., Cruden, A.R., 1998. Magmatic fabric acquisition mechanism

in a syenite: results of a combined anisotropy of magnetic susceptibility

and image analysis study. Journal of Geophysical Research 103, 5067–

5089.

Launeau, P., Robin, P.-Y.F., 1996. Fabric analysis using the intercept

method. Tectonophysics 267, 91–119.

Owens, W.H., 1984. The calculation of a best-fit ellipsoid from elliptical

sections on arbitrarily orientated planes. Journal of Structural Geology 6

(5), 571–578.

Paterson, S.R., Pignotta, G.S., Vernon, R.H., 2004. The significance of

microgranitoid enclave shapes and orientations. Journal of Structural

Geology 26, 1465–1481.

Robin, P.-Y.F., 2002. Determination of fabric and strain ellipsoids from

measured sectional ellipses—theory. Journal of Structural Geology 24,

531–544.

Serra, J., 1982. Image Analysis and Mathematical Morphology. Academic

Press, London. 610pp.


	Determination of fabric and strain ellipsoids from measured sectional ellipses-implementation and applications
	Introduction
	Owenss (1984) reduction spots in a slate from Dinorwic, N. Wales, UK
	Mafic enclaves in the hercynian Mont-Louis granite, eastern central Pyrenees
	The ‘hyperboloid problem’
	Incompatibility indices and elimination of outlying data
	Mont-Louis marginal enclaves

	Image analysis in the Tellnes Ilmenite deposit, SW Norway
	Methodology
	Scatter analysis and results

	Pyroxene fabric in a gabbro-norite from the critical zone, eastern limb of the Bushveld complex
	Methodology of image analysis
	Results

	Discussion and conclusion
	Acknowledgements
	Appendix A
	References


